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The mechanism of the reaction of 1,3-dipolar compounds such as ozone is a matter of consid- 

erable current interest and controversy.3 For the cycloaddition of such substances with unsat- 

urated compounds, arguments have been advanced for a concerted mechanism 31 and also for one that 

involves diradical intermediates. zb We here report evidence on the mechanism of one reaction of 

a related type, the reaction of ozone with tert-butyl hydroperoxide, a reaction that formally 

involves the insertion of ozone into an O-H bond. The formal insertion of ozone into C-H bonds 

is known, and both concerted and radical mechanisms have been proposed.4 

The reaction of ozone with organic hydroperoxides is known ultimately to produce free radi- 

cals.5 We have examined the reaction of ozone with tert-butyl hydroperoxide (TOOH) at -60 to 

20°C in several solvents. When the reaction is nearly complete, the products (by glpc) consist 

of 78% tert-butyl alcohol (TOH); 6% di-tert-butyl peroxide (TOOT); 4% acetone, and 8% recovered 

TOOH. At 50% reaction, 42 mmoles of ozone are consumed per 100 mmoles of TOOH used.' We have 

studied the kinetics of the reaction in CFC13 at -4'C, using pre-prepared solutions of ozone, 

mixing in the TOOH at time zero, and following the disappearance of the UV band of ozone at 

267 nm (E = 2420) with time. (Ozone is generally about 4 x 10m4 M and is the limiting reagent.) 

The products can be rationalized2'5 by steps l-4. However, this simple scheme predicts 
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that the yield of TOOT should equal the amount of 0s used (since eq 2a terminates two radicals 

and eq la forms two). Since our products show a much lower relative yield of TOOT, eq 5 also 

must be added to the kinetic scheme. 

kx TOO. + 0s -TO* + 202 (5) 

Acetone clearly arises from B-scission of tert-butoxy radicals (eq 4), demonstrating the 

radical nature of the reaction. Nevertheless, we have measured the competition between B-scis- 

sion to give acetone (eq 4) and hydrogen abstraction from an added hydrogen donor QH (eq 6). 

TO. + QH 
'k 

M TOH + Q. (6) 

We have used cyclohexane as the hydrogen donor in acetonitrile solvent at O'C. Figure 1 shows 

a plot of the product ratio versus cyclohexane concentration, the slope of which equals kR/ks. 

As can be seen, our data yield 91 for this ratio, in good agreement with the literature value 

of a2.6 Thus, tert-butoxy radicals are involved in the production of both acetone and tert- 

butyl alcohol. 

When the TOOH concentration is relatively high, eq 3 is faster than eq 4, and the ace- 

tone yields are very low. Thus, in CFCls at -4'C, the acetone yield is <l% at 50% reaction. 

Under these conditions, eq 4 can be neglected, and a steady state analysis of eqs 1, 2, 3, 

and 5 gives eq 7. Equation 7 can be rearranged and plotted (using initial rates and 

0.5 

Rate(-0s) = k$TOOH][Os] + kx [TOOH]"s [Oo]"' (7) 
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Figure 1. A plot of relative yields of 
TOH/acetone versus the concentration of 
CsHla as hydrogen donor. The slope 
equals kH/ks. 

kizl.9 

Figure 2. A plot of eq 7. The slope 
equals ki, and values of this rate constant 
for both TOOH and the deuterated analogue, 
TOOD, are shown. 
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initial or average concentrations) as Rate/[03]"5[TOOH]o'5 versus [TOOH]"'5/[03]o'5; the slope 

of this plot equals ki. (See Figure 2.) For TOOH, this plot yields ki = 5.4 set-' M-l; for 

tert-butyl hydroperoxide-d, (TOOD), ki is obtained as 1.9 set-' M-l. Thus, kH/kD = 2.8 for 

step la. The intercept of these plots is equal to kx(ki/kt)"', from which approximate values 

of k, can be obtained. (The value of 2k, = 74 see-' M-' at -4°.7) This treatment gives k, = 

25 + 8 for both TOOH and TOOH, as shown in Figure 2. _ 

This full analysis was done only at -4'. However, approximate second order rate constants 

were obtained at 20' and -23'C by assuming eqs l-3 describe the system and plotting In (03) ver- 

sus time. These plots are quite precise. (A similar technique has been used by Cvetanovic.') 

Using rates obtained in this way, Ea = 7 kcalfmole. 

Several mechanisms can be envisioned for eq la. The first, and perhaps the one that might 

be regarded as most likely from the cycloaddition literature, is a concerted dipolar insertion. 

MECHANISM I: CONCERTED IKSERTION. 

TOO-H + 6+0=0_06- P AH = 25 [TO&] 
AH = -11 + TOO. + 03 + HO* (8) 

Intermediate 

In this mechanism, tert-butyl hydropentoxide, TOsH, is produced as a transient intermediate 

that subsequently undergoes homolysis. 9a Using Benson's group additivity terms, 3b however, the 

heats of the two steps in Mechanism I can be calculated to be the values shown in eq 8. Thus, 

the low value of the activation energy convincingly excludes the possibility of the endothermic 

penta-oxy compound being involved as an intermediate, and the insertion mechanism can be elimin- 

ated. 

The second mechanism that might be envisioned is an electron transfer. This mechanism is 

ktWUANISM II: ELECTRON-TRANSFER. 

TOOH + 03 elz,';;on -f TOOH? + 03; 
fast 

proton 
+ TOO* + HO. + 03 (9) 

transfer transfer 

excluded by the isotope effect, kR/kD = 2.8. It also is inherently improbable since the differ- 

ence in the electron affinity of ozone and ionization potential of TOOH is over 8 eV." 

The mechanism we favor is a molecule-assisted homolysis (M/G-l) step" that can be formulated 

MEChXNIZ?rt III: MOLECULE-ASSISTED HOMOLYSIS. 

TOOH + 03 
AH = 14 B [TOO---H---O---O-;-O] - TOO. + HO. + 03 (10) 

Transition state 

AH = 29 
TOOH + 03 - TOO. + HO3. (11) 

as in eq 10. (Since the decomposition of HO3. is exothermic, eq 11 is more endothermic than 10 

and can be excluded.) The heat of reaction 10 is 14 kcal/mole.'2 Thus, the Eo of the first, 

non-chain term in eq 7 would be expected to be approximately 14 kcal/mole, whereas that of the 

second chain term would be: 5 + 1412 - b/2 = 9 kcal/mole. Thus, this mechanism predicts an 

observed Ea between 9 and 14 kcaljmole, depending on the kinetic chain lengths, in reasonable 

agreement with the observed value of 7 kcal/mole. (All these values are probably + 2 kcal/mole.) 
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MAH reactions have been 

number of recent reports and 

identified in a number of systems and have been the 

reviews." In several examples, a hydrogen atom is 
> 

subject of a 

postulated to 

be transferred, usually to an olefin as the acceptor molecule,"c but in few cases is the evi- 

dence completely compelling. Ile-h However, the reaction of 0s with TOOH does appear to involve 

an MAH reaction in which a hydrogen atom is transferred in the radical-producing step.12 
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S. W. Benson (private communication) has suggested a fourth mechanism in which 03 + 02 + 0 

is the initiation step, and a chain sequence with eq 5 as the key step. His treatment 
gives a rate law with a chain term that is 3/2-order in ozone (our data plot as first 
order, since chain lengths are short) and activation energies for the initiation (non- 
chain) step of 25 kcal/mole and 15 kcal/mole for the chain term. Although a reaction with 
E c( = 25 kcal/mole could contribute to radical production at 20 or -4'C, it is unlikely 
that the unassisted homolysis of ozone can explain the formation of radicals at -24 or 
-6O'C. The half lives for homolysis of 0s at -60, -24, -4 and 20°C are: 10'1, 106, 106, 
and 10' set, respectively. 


